中國金屬學(xué)會(huì) 翁宇慶
摘 要 采用組織超細(xì)化提高鋼鐵結(jié)構(gòu)材料的強(qiáng)韌性和使用壽命是上個(gè)世紀(jì)90年代中期以來的發(fā)展趨勢。介紹了我國973第一批項(xiàng)目之一“新一代鋼鐵材料重大基礎(chǔ)研究”的主要5種超細(xì)化方法,適用于不同強(qiáng)度和顯微組織的鋼類:具有鐵素體+珠光體(F+P)的碳素或低合金鋼,采用強(qiáng)力軋制和形變誘導(dǎo)鐵素體相變(DIFT)技術(shù);在薄板坯連鑄連軋現(xiàn)代流程下,采用第二相(析出相)的納米化控制;具有低碳貝氏體或針狀鐵素體的微合金鋼采用形變誘導(dǎo)析出(DIP)和中溫相變控制;采用調(diào)質(zhì)處理的合金結(jié)構(gòu)鋼,應(yīng)用新的合金設(shè)計(jì)思路以提高界面溫度,增加氫陷阱和二次硬化路線,快速超細(xì)晶熱處理的綜合技術(shù);發(fā)展無碳化物貝/馬組織和富碳?xì)垔W薄膜以做到中低溫回火合結(jié)鋼的強(qiáng)韌化優(yōu)良配合。
關(guān)鍵詞 顯微組織 組織細(xì)化 超細(xì)晶 結(jié)構(gòu)鋼
2002年,中國鋼鐵產(chǎn)量達(dá)到1.8億t,表觀消費(fèi)量達(dá)到2.1億t,遙居世界首位,也是世界歷史上鋼鐵材料生產(chǎn)和消費(fèi)的第一大國最高歷史紀(jì)錄。這是中國經(jīng)濟(jì)及市場高需求的反映,說明鋼鐵材料對經(jīng)濟(jì)發(fā)展和社會(huì)需求的重要性。在鋼鐵材料中,90%~95%屬于結(jié)構(gòu)材料,在需求增長的同時(shí),鋼鐵結(jié)構(gòu)材料正在發(fā)展“新一代鋼鐵材料”,它的特征是超細(xì)晶、高潔凈、高均勻,其中核心技術(shù)是超細(xì)晶,通過將當(dāng)前工業(yè)細(xì)晶粒尺寸(一般為20μm左右)細(xì)化一個(gè)數(shù)量級(jí),按照Hall-Perch的σs=σo+Kd-1/2關(guān)系式 關(guān)系式,鋼鐵材料的強(qiáng)度可提高一倍,同時(shí)保持良好的塑性和韌性配合。本文就國家第一批"973"項(xiàng)目之一“新一代鋼鐵材料的重大基礎(chǔ)研究”所研發(fā)的超細(xì)晶形成和控制的主要五條技術(shù)路線作一概略性的介紹。
1.碳素和低合金結(jié)構(gòu)鋼的組織細(xì)化
這類鋼占鋼鐵結(jié)構(gòu)材料的85%以上,其中以熱軋為鋼廠供應(yīng)態(tài),也是用戶使用態(tài)的占到70%以上,組織細(xì)化的重要性和經(jīng)濟(jì)性反映最為突出,也是“973"工作的重點(diǎn)。目前已形成一條完整的工藝流程,即:
潔凈化冶煉-充分等軸晶化凝固-強(qiáng)力和低溫初軋-“形變誘導(dǎo)鐵素體相變”精軋一冷卻控制。
這條路線是我國鋼鐵科技工作者近幾年的創(chuàng)新集成。潔凈化冶煉以使材料強(qiáng)度提高以后,使由于鋼中夾雜物帶來的脆化敏感性得以避免,保證使用(特別是低溫使用)的安全性。如果發(fā)展并采用了提高等軸晶率的凝固技術(shù)后,由于順序凝固形成的柱狀晶得以消除或減弱,材料的宏觀偏析,特別是中心偏析可以明顯減少;材料的成分分布均勻性得以提高,這就保證了高質(zhì)量、均勻力學(xué)性能鑄坯的形成。在有了潔凈化和高均勻性(成分及性能)基礎(chǔ)上,就可以采用強(qiáng)力和低溫開坯可能性,在初軋階段應(yīng)用奧氏體的再結(jié)晶細(xì)化基礎(chǔ)上,精軋階段采用關(guān)鍵的“形變誘導(dǎo)鐵素體相變”(Deformation Induced Ferrite Transformation,DIFT)技術(shù),而凝固的充分等軸晶化技術(shù)和初軋充分應(yīng)用再結(jié)晶細(xì)化為DIFT的應(yīng)用創(chuàng)造了前提條件。
80年代中期,Yada[1]等人在試驗(yàn)室研究C-Mn鋼的晶粒細(xì)化工作時(shí)提出了“應(yīng)變誘導(dǎo)相變”(Strain Induced Transformation,SIT)概念,90年代中期P.D.Hodgson等人[2]利用單機(jī)架軋機(jī)使熱軋鋼帶表面做到超細(xì)晶(最細(xì)約0.5~l μm),提出了“應(yīng)變誘導(dǎo)相變軋制”(Strain-induced transformation rolling,SITR)過程。從事新一代鋼鐵材料(簡稱N.G.Steel)研究的我國科技工作者,對這一過程的熱力學(xué)、動(dòng)力學(xué)、晶體學(xué)、微觀組織形貌特征及力學(xué)性能表現(xiàn)等進(jìn)行了系統(tǒng)研究,認(rèn)為這一現(xiàn)象(誘導(dǎo)相變)不僅與應(yīng)變有關(guān),而且鋼的化學(xué)態(tài)勢(化學(xué)成分及化學(xué)位);凝固后軋制之前的固態(tài)相分布狀況;軋制時(shí)的應(yīng)力、應(yīng)變、應(yīng)變速率、軋制機(jī)架間的道次冷卻和停留時(shí)間;軋后的控冷(包含卷取等工藝)都與這個(gè)過程有關(guān),是一個(gè)多變量多因素的耦合過程。因此從“應(yīng)變誘導(dǎo)相變”深化為“形變誘導(dǎo)相變”的全過程概念,并在2000年韓國召開的"21世紀(jì)高性能結(jié)構(gòu)材料”(HIPER—21)會(huì)議上正式提出“形變誘導(dǎo)鐵素體相變”[3](Deformation Induced Ferrite Transformation,DIFT)。本文僅就其熱力學(xué)原因及特點(diǎn)加以簡單介紹,余詳見《超細(xì)晶鋼》一書[4]。
DIFT不同于傳統(tǒng)控軋控冷(TMCP)之處,是它的相變(低碳鋼中γ-α+P)主要發(fā)生在軋鋼過程中而不是軋后冷卻過程中。
通常,多數(shù)鋼鐵結(jié)構(gòu)材料熱軋是在單一奧氏體相區(qū)軋制,見圖1(a)。研究和生產(chǎn)都關(guān)注有關(guān)軋制溫度、應(yīng)力一應(yīng)變和產(chǎn)品的質(zhì)量控制(板形,尺寸,精度)等參數(shù),一般不關(guān)注或不追求產(chǎn)生相變的條件,TMCP關(guān)注軋制是因?yàn)樗鼮橐院罄鋮s時(shí)γ-α+P的形核及相轉(zhuǎn)變以及分布創(chuàng)造了條件。從熱力學(xué)分析表明,由于軋制產(chǎn)生的變形能不可能在軋后由熱馳豫、彈塑性恢復(fù)等完全釋放,特別在現(xiàn)代高速軋制條件下總有部分形變能被保留在被變形的鋼材中,這部分能量在適當(dāng)條件下,轉(zhuǎn)變?yōu)橄嘧冏杂赡茏兓囊徊糠郑黾恿讼嘧兊尿?qū)動(dòng)力(根據(jù)計(jì)算和分析,約占變形能的5%~10%。
若用熱力學(xué)描述這個(gè)概念,即是一般相變的方向應(yīng)朝體系自由能降低的方向發(fā)展,即△G<0,而自由能變化的方向取決于
△G=一y(△Gv—△GE)+ ?gs (1)
式中 △G——體系總的自由能變化;
△Gv——體積自由能變化;
△GE——彈性自由能變化;
△Gs——新相形成的表面自由能變化。
若在軋鋼中考慮到被變形儲(chǔ)存的變形能,這部分變形能轉(zhuǎn)化為相變驅(qū)動(dòng)力為△GD,它最終降低了系統(tǒng)的自由能,則式(1)改寫為:
△G=一V(△Gv—△GE)+ △Gs—△GD (2)
由于式(2)的影響,反映軋鋼中相變臨界點(diǎn)(Ae3)發(fā)生了變化。即平衡狀態(tài)下開始出現(xiàn)α相的臨界點(diǎn)Ae3在考慮到?GD的影響后實(shí)際上形成了AD3(變形態(tài)下的A3)。計(jì)算表明(圖2),被儲(chǔ)存的變形能?GD越大,AD3提高得越多,因而在精軋機(jī)組軋鋼(當(dāng)軋制溫度接近Ae3時(shí),一般軋制區(qū)間在AD3~Ar3區(qū)間)過程有可能使鋼材進(jìn)入(γ+α)的實(shí)際雙相區(qū),即誘導(dǎo)產(chǎn)生新生α相,即是形變誘導(dǎo)鐵素體相變,而不是雙相區(qū)保溫或緩冷應(yīng)當(dāng)出現(xiàn)塊狀粗大的α相,也有人建議這類軋制是一種“臨界點(diǎn)軋制”。
實(shí)驗(yàn)室的工作證明了形變誘導(dǎo)鐵素體相變(DIFT)的產(chǎn)生,見圖3。一種低碳鋼,當(dāng)在1150℃奧氏體化加熱后,以5℃/s冷卻速度到825℃,再825℃保溫均勻化后水淬,得到馬氏體組織(圖3(a));若825℃保溫均勻化后變形60%,變形后立即水淬,則得到超細(xì)鐵素體(圖3(b))。因此通過形變,使在單一奧氏體相區(qū)內(nèi)可以誘導(dǎo)產(chǎn)生超細(xì)的鐵素體。
這類相變有一些特性:
(1) 它是動(dòng)態(tài)相變,是在有軋制力產(chǎn)生形變儲(chǔ)存能后誘導(dǎo)相變,不是軋后冷卻的相變。由于是動(dòng)態(tài)相變,它屬于非平衡態(tài)過程,因而在一定條件下就有逆相變及其他亞穩(wěn)相變出現(xiàn)的可能。
(2) 它是形核為主的相變。α相形核首先產(chǎn)生于具有高畸變儲(chǔ)能的原子晶界,在臨界尺寸晶核(r*)以上的新相形核后沿α/γ相界前沿高畸變區(qū)反復(fù)形核,這個(gè)形核條件取決于局部應(yīng)變和應(yīng)變能足夠大(即有一個(gè)微觀的臨界應(yīng)變量),在系統(tǒng)應(yīng)變能增大后也在晶內(nèi)高畸變區(qū)(應(yīng)變帶,滑移帶,孿晶帶,亞結(jié)構(gòu)界面、第二相界面)不斷產(chǎn)生形核。這個(gè)反復(fù)形核是形核的不飽和過程。不能用Cahn提出的飽和形核機(jī)制描述,也不能用一階段的J-M-A方程描述。
(3) 它具有快速相變特征。在化學(xué)勢驅(qū)動(dòng)和高溫?cái)U(kuò)散型相變范圍內(nèi),碳的上坡擴(kuò)散和管道擴(kuò)散快(因位錯(cuò)密度在增加,又是高溫過程)是主要決定因素,計(jì)算表明在毫秒級(jí)就能發(fā)生。
(4) 它具有超細(xì)晶表現(xiàn)。計(jì)算指出,DIFT相變的臨界核心尺寸(r*)比類似溫度的再結(jié)晶相變或軋后冷卻γ-α相變的尺寸都小,見圖4。若?GD=50J/mol,r*=0.064μm,在一般低碳碳素鋼中,鐵素體的平均晶粒尺寸可在5μm 以下(生產(chǎn)條件),而實(shí)驗(yàn)室可達(dá)l μm左右。在微合金鋼中因有M(C.N)存在,就會(huì)阻礙新生α的長大。它的鐵素體晶粒尺寸在生產(chǎn)條件下也能達(dá)1~2μm。形成的超細(xì)晶會(huì)按照Hall-Petch關(guān)系強(qiáng)化材料。
(5) DIFT的發(fā)生并在連續(xù)軋制過程中伴生了鐵素體動(dòng)態(tài)再結(jié)晶(α—DRX),α動(dòng)態(tài)再結(jié)晶使得最終出現(xiàn)超細(xì)等軸化鐵素體,使材料強(qiáng)韌性和各向同性基本得到保證。DIFT/α-DRX是兩個(gè)階段但又是連軋過程中連續(xù)交叉發(fā)生,這是工藝控制重點(diǎn)。
(6) 在連續(xù)變溫軋制時(shí)不追求極高的DIFT α體積量,(試驗(yàn)室采用大形變量和深過冷雙重作用后可達(dá)90%以上,生產(chǎn)條件下很難超過50%)。這種誘導(dǎo)過程對隨后的TMCP γ-α+P產(chǎn)生影響,若把γ-DRX,DIFT/α-DRX和冷卻/γ-α+P三類過程最優(yōu)組合,可以得到“強(qiáng)度翻番,韌性優(yōu)良”的新一代鋼鐵材料。
——《中國金相分析網(wǎng)》